ОСНОВНІ ОСОБЛИВОСТІ ЗАСТОСУВАННЯ ТРУБЧАСТОЇ ТЕХНОЛОГІЇ У КАМЕРІ ЗГОРЯННЯ СУЧАСНОГО ГАЗОТУРБІННОГО ДВИГУНА

Нафтогазова промисловість, як одна з найважливіших складових паливо-енергетичного комплексу країни, використовує велику частку застарілого, технічно зношеного обладнання та устаткування, яке має невисокі показники з енергетичної ефективності та суттєво забруднює навколишнє середовище [1]. Для підвищення ефективності використання газу потрібно вдосконалювати пальникової системи і умови спалювання палива. При створенні нових і модернізації існуючих пальникових пристроїв у складі газотурбінних двигунів (ГТД) об'єктивною необхідністю є реалізація принципу досягнення випереджаючого зростання рівня екологічної безпеки по відношенню до темпів зростання енергетичної потужності [2].

У роботі проведено комплексне дослідження експлуатаційних характеристик пальникової системи вітчизняного ГТД ДН-80 з використанням трубчастої технології газоспальовника. При розробці нового типу фронтового пристрою камери згоряння у НТЦ «ЕКОТЕЗ» були дотримані умови збереження принципу розбірності конструкції пальника, принципу багатоканальної подачі палива у зону сумісного відведення, мінімальний змінення габаритних розмірів і закону розподілу швидкостей потоків у прохідних перерізах по газовому і повітряному трактам, закладених у конструкцію штатного пальника. Було проведено 3D-моделювання аеродинамічних та теплових процесів нової пальникової системи трубчастого типу (зміишування природного газу і повітря, рух та нагрів суміші). Для перевірки адекватності моделі були використані данні випробувань на дослідному стенді МНВКТТ «Зоря-Машпроект», що включали в себе пускові випробування, зміну режимів завантаження, визначення енерго-екологічних і пульсаційних характеристик, що дозволили визначити основні напрямки подальшої модернізації трубчастого пальника камери згоряння ГТД ДН-80.

Результатом моделювання аеродинамічних процесів у пальникової системі трубчастого типу були визначені умови підвищення рівня рівномірності температурного поля у жаровій трубі, створення якісного перемішування природного газу і повітря, що позитивно впливає на процес спалювання і сприяє зниженню емісії шкідливих для навколишньої середи викидів. Зниження аеродинамічного опору пальникової системи трубчастого типу на 25% дозволяє отримати збільшення ККД газоперекачувального агрегату (ГПА) з одночасним заощадженням паливного газу.

Перелік посилань:
