ОСОБЛИВОСТІ ВИКОРИСТАННЯ ЩІЛИНИХ ТЕПЛООБМІННИКІВ

Тенденцією розвитку пристроїв обчислювальної техніки і систем керування є розширення їх функціональних можливостей та підвищення швидкодії. Це призводить до збільшення споживаної потужності, значна частина якої відіймається в електронних компонентах у вигляді теплоти. Внаслідок цього підвищується їх температура, а це негативно впливає на надійність роботи. Оскільки створення нових та модернізація існуючих пристроїв здійснюється, як правило, в умовах жорстких конструктивних та габаритних обмежень, то проблема нагрівання стає вирішальною, а й розв'язання — складною науково-технічною задачою.

З останніх 20-25 років елементна база пристроїв істотно оновилась: замість малопотужних інтегральних мікросхем з’явилися потужні напівпровідникові елементи (одно- та багатоядерні мікропроцесори, багатокристалльні модулі, світлодіоди та лазерні діоди тощо). Гостро ставиться проблема пошуку нових концептуальних підходів до організації тепловідводу та створення більш ефективних засобів забезпечення теплових режимів, які б дозволяли знизити термічний опір тепловіддачі від електронного компоненту до охолоджуючого середовища і за рахунок цього значно збільшити кількість відведеного теплої потужності від одного елементу з мінімальними енергозатратами.

Перспективним, шляхом досягнення високих коефіцієнтів тепловіддачі без фазових перетворень є перехід на канали для руху теплоносія, що мають товщиною менше за товщину ламінарного підшарування технічно доцільних швидкостей руху в каналах [1].

Аналіз робочих характеристик відомих водяних систем охолодження високопродуктивних електронних схем показує, що ефективність тепловідводу визначається, в основному, інтенсивністю кондуктивно-конвективного теплообміну в рідному теплообміннику в зоні тепловідводу та інтенсивністю теплообміну з зовнішньої поверхні повітряно-рідного теплообмінника. Підвищення інтенсивності теплообміну в зоні тепловідводу можна досягти в рідному теплообміннику спеціальних щілинних каналів для протікання рідини, що забезпечують високоїфективний конвективний теплообмін.

Для одержання порівняльних характеристик були проведені експериментальні дослідження ефективності тепловідводу за допомогою розробленого алюмінієвого двоканального щілинного теплообмінника з висотою каналів 0,3 мм та рідинного теплообмінника фірми Titan, що поставляється в комплекті з рідинною системою охолодження для мікропроцесорів.

Результати проведених досліджень двох типів теплообмінників переконливо свідчать про більш високу ефективність тепловідводу за допомогою розробленого двоканального щілинного теплообмінника в порівнянні з існуючим на ринку теплообмінником Titan. Це положення обґрунтовано досягнутими, з одного боку, значно більш низькими температурами поверхні імітатора теплового потоку при однаковій теплій потужності, що відводиться, і, з іншого боку, більш високими значеннями потужності, що відводиться, при однаковій температурі імітатора.

Розроблений теплообмінник може знайти широке застосування як для охолодження мікропроцесорів EOM, так і для охолодження інших теплообмінних компонентів і вузлів електронної апаратури.

Перелік посилань: